Deep reinforcement learning based voltage control revisited
Saeed Nematshahi,
Di Shi,
Fengyu Wang
et al.
Abstract:Deep Reinforcement Learning (DRL) has shown promise for voltage control in power systems due to its speed and model‐free nature. However, learning optimal control policies through trial and error on a real grid is infeasible due to the mission‐critical nature of power systems. Instead, DRL agents are typically trained on a simulator, which may not accurately represent the real grid. This discrepancy can lead to suboptimal control policies and raises concerns for power system operators. In this paper, we revisi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.