Takviyeli öğrenme, içinde bulunduğu ortamı algılayan ve kendi kendine kararlar verebilen bir sistemin, mevcut problemin çözümünde doğru kararlar almayı nasıl öğrenebileceği bir yöntemdir. Bu makalede, bir robotun haraketli engellerin(yayalar) olduğu bir ortamda engellere çarpmadan belirtilen alanda otonom bir şekilde hareket etmeyi öğrenmesi için derin takviyeli öğrenme tabanlı bir algoritma önerilmektedir. Oluşturulan simülatör ortamında derin öğrenme algoritmalarından Convolutional Neural Network(CNN), Long-short Term Memory(LSTM) ve Recurrent Neural Network(RNN) ayrı ayrı kullanılıp performansları test edilerek raporlanmıştır. Buna göre bu makale kapsamında literatüre üç önemli katkı sunulmaktadır. Birincisi etkili bir otonom robot algoritmasının geliştirilmesi, ikincisi probleme uygun olarak uyarlanabilen derin öğrenme algoritmasının belirlenmesi, üçüncü olarak otonom bir robotun hareketli engellerin olduğu kalabalık ortamlardaki hareket eylemini gerçekleştirmesi için genelleştirilmiş bir derin takviyeli öğrenme yaklaşımının ortaya konulmasıdır. Geliştirilen yaklaşımların doğrulanması için derin takviyeli öğrenme algoritmaları ayrı ayrı simüle edilerek eğitimi gerçekleştirilmiştir. Yapılan eğitim sonuçlarına göre, LSTM algoritmasının diğerlerinden daha başarılı olduğu tespit edilmiştir.