2021
DOI: 10.4018/978-1-7998-3640-7.ch014
|View full text |Cite
|
Sign up to set email alerts
|

Deep Reinforcement Learning Methods for Energy-Efficient Underwater Wireless Networking

Abstract: The wireless sensor networks have been developed and extended to more expanded environments, and the underwater environment needs to develop more applications in different fields, such as sea animals monitoring, predict the natural disasters, and data exchanging between underwater and ground environments. The underwater environment has almost the same infrastructure and functions with ground environment with some limitations, such as processing, communications, and battery limits. In terms of battery limits, m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 9 publications
0
0
0
Order By: Relevance