Abstract:Conventionally, since the natural language action space is astronomical, approximate dynamic programming applied to dialogue generation involves policy improvement with action sampling. However, such a practice is inefficient for reinforcement learning (RL) because the eligible (high action value) responses are very sparse, and the greedy policy sustained by the random sampling is flabby. This paper shows that the performance of dialogue policy positively correlated with sampling size by theoretical and experi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.