An advanced drain current model for symmetrical Double-Gate MOSFETs (DGMOSFETs), including short channel, velocity saturation and self-heating effects, is presented. The temperature dependence of the low-field mobility, saturation velocity and inversion charge is analyzed and accurately included in the model. Self-heating is considered through the thermal resistance of the device, which is estimated in two ways: from an equivalent thermal circuit and from numerical output characteristic curves, obtained with a commercial TCAD tool (Sentaurus by Synopsys), and fitted with a drain current model. The validity of the model is checked by comparing with simulation results, for the typical bias range used in integrated circuits.