The continuous evolution of video technologies is now primarily focused on enhancing 3D video paradigms and consistently improving their quality, realism, and level of immersion. Both the research community and the industry work towards improving 3D content representation, compression, and transmission. Their collective efforts culminate in the striving for real-time transfer of volumetric data between distant locations, laying the foundation for holographic-type communication (HTC). However, to truly enable a realistic holographic experience, the 3D representation of the HTC participants must accurately convey the real individuals’ appearance, emotions, and interactions by creating authentic and animatable 3D human models. In this regard, our paper aims to examine the most recent and widely acknowledged works in the realm of 3D human body modelling and reconstruction. In addition, we provide insights into the datasets and the 3D parametric body models utilized by the examined approaches, along with the employed evaluation metrics. Our contribution involves organizing the examined techniques, making comparisons based on various criteria, and creating a taxonomy rooted in the nature of the input data. Furthermore, we discuss the assessed approaches concerning different indicators and HTC.