2022
DOI: 10.1109/tgrs.2021.3081516
|View full text |Cite
|
Sign up to set email alerts
|

Deep Unsupervised 4-D Seismic 3-D Time-Shift Estimation With Convolutional Neural Networks

Abstract: We present a novel 3D warping technique for the estimation of 4D seismic time-shift. This unsupervised method provides a diffeomorphic 3D time shift field that includes uncertainties, therefore it does not need prior time-shift data to be trained. This results in a widely applicable method in timelapse seismic data analysis. We explore the generalization of the method to unseen data both in the same geological setting and in a different field, where the generalization error stays constant and within an accepta… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 44 publications
0
1
0
1
Order By: Relevance
“…Не вызывает сомнения польза применения искусственного интеллекта, в том числе нейросетевых алгоритмов, для решения задач математической картографии и геоинформационного моделирования [11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29].…”
Section: Introductionunclassified
“…Не вызывает сомнения польза применения искусственного интеллекта, в том числе нейросетевых алгоритмов, для решения задач математической картографии и геоинформационного моделирования [11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29].…”
Section: Introductionunclassified
“…These methods, however, often necessitate extensive labeled datasets for training, a significant impediment given the rarity and unpredictability of seismic anomalies. The current zenith of anomaly detection methodology in seismology is epitomized by unsupervised learning algorithms, which do not require labeled data and are adept at handling the data-rich but label-sparse reality of seismic monitoring (Dramsch, Christensen, MacBeth, & Lüthje, 2021). The Isolation Forest algorithm has emerged as a leading-edge tool, designed to isolate anomalies rather than model the 'normal' data, an approach that is inherently suitable for the seismic domain where 'normal' is a fluid and elusive concept (Heigl et al, 2021;Lesouple, Baudoin, Spigai, & Tourneret, 2021).…”
Section: Introductionmentioning
confidence: 99%