The increasing demand for video streaming services is the key driver of modern wireless and mobile communications. For robust and high-quality delivery of video content over wireless and mobile networks, the main challenge is sending image and video signals to single and multiple users over unstable and diverse channel environments. To this end, many studies have designed digital-based video delivery schemes, which mainly consist of a sequence of digital-based coding and transmission schemes. Although digital-based schemes perform well when the channel characteristics are known in advance, significant quality degradation, known as cliff and leveling effects, often occurs owing to the fluctuating channel characteristics. To prevent cliff and leveling effects irrespective of the channel characteristics of each user, a new paradigm for wireless and mobile video streaming has been proposed. Soft delivery schemes skip the digital operations of quantization and entropy and channel coding while directly mapping the power-assigned frequency-domain coefficients onto the transmission symbols. This modification is based on the fact that the pixel distortion due to communication noise is proportional to the magnitude of the noise, resulting in graceful quality improvement, wherein quality is improved gradually, according to the wireless channel quality without any cliff and leveling effects. Herein, we present a comprehensive summary of soft delivery schemes. First, we provide a brief introduction on wireless and mobile video streaming. Second, we discuss the issues associated with conventional digital-based video delivery schemes. Third, an overview of soft delivery is presented, and then the state of the art in soft delivery is summarized by considering energy compaction, power allocation, bandwidth utilization, and packet loss resilience. Finally, an excursion on the extensions needed for immersive content and future research directions are provided.