2019
DOI: 10.1007/978-3-030-18305-9_58
|View full text |Cite
|
Sign up to set email alerts
|

DeepAnom: An Ensemble Deep Framework for Anomaly Detection in System Processes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
2
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 7 publications
0
2
0
2
Order By: Relevance
“…Therefore, their methods cannot handle a previously unseen system call without reconstructing the whole model. In [26], [27], the authors implemented an ensemble framework based on the encoder-decoder model using attention layer to do anomaly detection in both the event and temporal stream of the system call properties. This work uses similar principles as our work but differs in architecture.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Therefore, their methods cannot handle a previously unseen system call without reconstructing the whole model. In [26], [27], the authors implemented an ensemble framework based on the encoder-decoder model using attention layer to do anomaly detection in both the event and temporal stream of the system call properties. This work uses similar principles as our work but differs in architecture.…”
Section: Related Workmentioning
confidence: 99%
“…This work uses similar principles as our work but differs in architecture. Furthermore, [26], [27] algorithms' predictions could suffer from cumulative errors as a result of the use of anomalous sub-sequence in the input samples. The authors of [28] propose a deep transfer network (DTN) that uses transfer learning to leverage the knowledge gained from rich labeled data in the source domain to facilitate diagnosing a new but similar target task.…”
Section: Related Workmentioning
confidence: 99%
“…Bu veri kümeleri, gömülü sistem verisi içeren erişime açık veri kümeleri oldukları için birçok araştırmada kullanılmışlardır ve bu veri kümelerinin ortak özellği ağ tabanlı gömülü sistemlere ait veri kümleri olmalarıdır. Bu çalışmada, ana bilgisayar tabanlı (host-based) Ezeme ve arkadaşları tarafından toplanan hava aracına ait sistem çağrıları, zaman bilgisi ve sistem çağrılarına ait farklı özellikleri içeren veri seti kullanılmıştır [13].…”
Section: Introductionunclassified
“…Ezeme ve arkadaşları, anormallik tespit tekniklerinden kümelenme tekniğini insansız hava aracı gömülü sistem çekirdek durumlarındaki anormallik tespiti için kullanmışlardır [14]. Kümelemeye dayalı tekniklerin ana fikri, verilen verilerden aykırı değerleri tespit etmek için standart kümeleme tekniklerinin uygulanmasıdır.…”
Section: Introductionunclassified