As Deep Learning (DL) systems are widely deployed for missioncritical applications, debugging such systems becomes essential. Most existing works identify and repair suspicious neurons on the trained Deep Neural Network (DNN), which, unfortunately, might be a detour. Specifically, several existing studies have reported that many unsatisfactory behaviors are actually originated from the faults residing in DL programs. Besides, locating faulty neurons is not actionable for developers, while locating the faulty statements in DL programs can provide developers with more useful information for debugging. Though a few recent studies were proposed to pinpoint the faulty statements in DL programs or the training settings (e.g. too large learning rate), they were mainly designed based on predefined rules, leading to many false alarms or false negatives, especially when the faults are beyond their capabilities.In view of these limitations, in this paper, we proposed DeepFD, a learning-based fault diagnosis and localization framework which maps the fault localization task to a learning problem. In particular, it infers the suspicious fault types via monitoring the runtime features extracted during DNN model training, and then locates * Corresponding author.