2023
DOI: 10.3390/computers12100216
|View full text |Cite
|
Sign up to set email alerts
|

Deepfake Attacks: Generation, Detection, Datasets, Challenges, and Research Directions

Amal Naitali,
Mohammed Ridouani,
Fatima Salahdine
et al.

Abstract: Recent years have seen a substantial increase in interest in deepfakes, a fast-developing field at the nexus of artificial intelligence and multimedia. These artificial media creations, made possible by deep learning algorithms, allow for the manipulation and creation of digital content that is extremely realistic and challenging to identify from authentic content. Deepfakes can be used for entertainment, education, and research; however, they pose a range of significant problems across various domains, such a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
2

Year Published

2024
2024
2024
2024

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 26 publications
(8 citation statements)
references
References 121 publications
0
6
0
2
Order By: Relevance
“…The categorization of these methods is based on their applications, encompassing video, image, audio, and hybrid multimedia detection. The primary goals of this paper are to provide readers with an improved understanding of ( 1 Naitali et al [11] offers a comprehensive exploration of deepfakes, encompassing their creation and providing insights into the current state-of-the-art detection techniques. The survey also delves into existing datasets tailored for deepfake research, highlights associated challenges, and outlines potential avenues for future research.…”
Section: Review Of Literature Much Research Work Has Been Conducted O...mentioning
confidence: 99%
“…The categorization of these methods is based on their applications, encompassing video, image, audio, and hybrid multimedia detection. The primary goals of this paper are to provide readers with an improved understanding of ( 1 Naitali et al [11] offers a comprehensive exploration of deepfakes, encompassing their creation and providing insights into the current state-of-the-art detection techniques. The survey also delves into existing datasets tailored for deepfake research, highlights associated challenges, and outlines potential avenues for future research.…”
Section: Review Of Literature Much Research Work Has Been Conducted O...mentioning
confidence: 99%
“…У педагогічній літературі активно дискутується проблема впровадження хмарних технологій в навчанні 1 , аналізується впровадженням підходу byod 2,3 , висвітлюється вирішення соціальних, педагогічних і технічних проблем, які можуть виникати при реалізації дистанційного 4 , мобільного і змішаного навчання 5 , обговорюється доцільність використання хмарних сховищ даних (наприклад, ms onedrive 6 ), досвід використання іт для контролю знань (наприклад, сервіс plickers як мобільний додаток для зчитування qr-кодів 7 додаток kahoot! 8,9 для контролю знань в ігровому форматі чи комп'ютерний засіб 10 для контролю математичних знань).…”
Section: вступunclassified
“…П'ятий кластер найбільшу вагу зв'язків (7) має у ключовому слові «cloud», що поєднується із словами «education» та «knowledge management» (перший кластер), «e-learning» (другий кластер), «virtualization» (четвертий кластер) та «cloud computing» (сьомий кластер). А ключове слово «cloud storage», яке має найменшу вагу (2) поєднується тільки із «cloud computing» сьомого кластеру.…”
Section: рис 5 кількість публікацій по рокахunclassified
“…When added to ML-based privacy solutions, malicious input data have the potential to alter the ML model itself or produce biased conclusions. Numerous research investigations have examined the influence of adversarial attacks on the performance of ML systems in several domains, including speech recognition [20], natural language processing [21,22], and image processing [23,24]. Most currently available surveys deal with adversarial attacks against ML in conventional network security [25,26] and image recognition [23,27].…”
Section: Introductionmentioning
confidence: 99%