The ever-growing threat of deepfakes and large-scale societal implications has propelled the development of deepfake forensics to ascertain the trustworthiness of digital media. A common theme of existing detection methods is using Convolutional Neural Networks (CNNs) as a backbone. While CNNs have demonstrated decent performance on learning local discriminative information, they fail to learn relative spatial features and lose important information due to constrained receptive fields. Motivated by the aforementioned challenges, this work presents DFDT, an end-to-end deepfake detection framework that leverages the unique characteristics of transformer models, for learning hidden traces of perturbations from both local image features and global relationship of pixels at different forgery scales. DFDT is specifically designed for deepfake detection tasks consisting of four main components: patch extraction & embedding, multi-stream transformer block, attention-based patch selection followed by a multi-scale classifier. DFDT’s transformer layer benefits from a re-attention mechanism instead of a traditional multi-head self-attention layer. To evaluate the performance of DFDT, a comprehensive set of experiments are conducted on several deepfake forensics benchmarks. Obtained results demonstrated the surpassing detection rate of DFDT, achieving 99.41%, 99.31%, and 81.35% on FaceForensics++, Celeb-DF (V2), and WildDeepfake, respectively. Moreover, DFDT’s excellent cross-dataset & cross-manipulation generalization provides additional strong evidence on its effectiveness.