2021
DOI: 10.48550/arxiv.2108.03503
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

DeepFH Segmentations for Superpixel-based Object Proposal Refinement

Abstract: Class-agnostic object proposal generation is an important first step in many object detection pipelines. However, object proposals of modern systems are rather inaccurate in terms of segmentation and only roughly adhere to object boundaries. Since typical refinement steps are usually not applicable to thousands of proposals, we propose a superpixel-based refinement system for object proposal generation systems. Utilizing precise superpixels and superpixel pooling on deep features, we refine initial coarse prop… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?