2020
DOI: 10.1101/2020.05.25.114165
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

DeepGraphMol, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach

Abstract: We address the problem of generating novel molecules with desired interaction properties as a multi-objective optimization problem. Interaction binding models are learned from binding data using graph convolution networks (GCNs). Since the experimentally obtained property scores are recognised as having potentially gross errors, we adopted a robust loss for the model. Combinations of these terms, including drug likeness and synthetic accessibility, are then optimized using reinforcement learning based on a gra… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 74 publications
0
1
0
Order By: Relevance
“…Yasonik [97] combined de novo molecular generation in silico (using RNNs) with a multi-objective evolutionary algorithm in an iterative method for selecting suitable molecules subjective to constraints on their physicochemical properties. Finally, here, our own laboratory has developed methods [151] based on molecular graphs and reinforcement learning for generating molecules predicted (from existing binding assays) to have a specific set of differential activities; the methods are entirely general.…”
Section: Drug Discovery More Generallymentioning
confidence: 99%
“…Yasonik [97] combined de novo molecular generation in silico (using RNNs) with a multi-objective evolutionary algorithm in an iterative method for selecting suitable molecules subjective to constraints on their physicochemical properties. Finally, here, our own laboratory has developed methods [151] based on molecular graphs and reinforcement learning for generating molecules predicted (from existing binding assays) to have a specific set of differential activities; the methods are entirely general.…”
Section: Drug Discovery More Generallymentioning
confidence: 99%