2021
DOI: 10.48550/arxiv.2104.02705
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression

Abstract: This paper describes the implementation of semi-structured deep distributional regression, a flexible framework to learn distributions based on a combination of additive regression models and deep neural networks. deepregression is implemented in both R and Python, using the deep learning libraries TensorFlow and PyTorch, respectively. The implementation consists of (1) a modular neural network building system for the combination of various statistical and deep learning approaches, (2) an orthogonalization cel… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(7 citation statements)
references
References 2 publications
0
6
0
1
Order By: Relevance
“…The additive predictor in our approach allows for straightforward interpretability and to recover the PAM(M) when no additional deep predictors are necessary. Our method can be fit using existing software solutions (e.g., deepregression [34]).…”
Section: Discussionmentioning
confidence: 99%
“…The additive predictor in our approach allows for straightforward interpretability and to recover the PAM(M) when no additional deep predictors are necessary. Our method can be fit using existing software solutions (e.g., deepregression [34]).…”
Section: Discussionmentioning
confidence: 99%
“…Here, w is the weight of input traffic x 1 to x d , and b is known as bias or offset. Weight determines the influence of features in the model [36], [37] and [38].…”
Section: F Regression With Deep Neural Networkmentioning
confidence: 99%
“…Selain itu pada bidang kesehatan, model regresi juga terus menjadi kebutuhan utama dalam kasus prediksi suatu penyakit [8]. Didorong oleh kebutuhan untuk memecahkan masalah regresi nonlinier dan multidimensi di dunia industri, peneliti di seluruh dunia untuk berusaha untuk menggunakan metode penyelesaian data multidimensi yang non-linier dengan model machine learning yang lebih kuat, seperti jaringan syaraf tiruan [9], deep regression [10], [11], random linear target combination [12], variational autoencoder regression [13], support vector regression [14], dan lainnya. Tingginya kebutuhan untuk melakukan komputasi yang lebih kompleks, kemampuan komputer dalam memproses data juga harus ikut meningkat, terutama dalam permasalahan machine learning [15].…”
Section: Pendahuluanunclassified