Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Brain age is a powerful marker ofgeneralbrain health. Furthermore, brain age models are trained on large datasets, thus giving them a potential advantage in predictingspecificoutcomes – much like the success of finetuning large language models for specific applications. However, it is also well-accepted in machine learning that models trained to directly predict specific outcomes (i.e., direct models) often perform better than those trained on surrogate outcomes. Therefore, despite their much larger training data, it is unclear whether brain age models outperform direct models in predicting specific brain health outcomes. Here, we compare large-scale brain age models and direct models for predicting specific health outcomes in the context of Alzheimer’s Disease (AD) dementia. Using anatomical T1 scans from three continents (N = 1,848), we find that direct models outperform brain age models without finetuning. Finetuned brain age models yielded similar performance as direct models, but importantly, did not outperform direct models although the brain age models were pretrained on 1000 times more data than the direct models: N = 53,542 vs N = 50. Overall, our results do not discount brain age as a useful marker of general brain health. However, in this era of large-scale brain age models, our results suggest that small-scale, targeted approaches for extracting specific brain health markers still hold significant value.
Brain age is a powerful marker ofgeneralbrain health. Furthermore, brain age models are trained on large datasets, thus giving them a potential advantage in predictingspecificoutcomes – much like the success of finetuning large language models for specific applications. However, it is also well-accepted in machine learning that models trained to directly predict specific outcomes (i.e., direct models) often perform better than those trained on surrogate outcomes. Therefore, despite their much larger training data, it is unclear whether brain age models outperform direct models in predicting specific brain health outcomes. Here, we compare large-scale brain age models and direct models for predicting specific health outcomes in the context of Alzheimer’s Disease (AD) dementia. Using anatomical T1 scans from three continents (N = 1,848), we find that direct models outperform brain age models without finetuning. Finetuned brain age models yielded similar performance as direct models, but importantly, did not outperform direct models although the brain age models were pretrained on 1000 times more data than the direct models: N = 53,542 vs N = 50. Overall, our results do not discount brain age as a useful marker of general brain health. However, in this era of large-scale brain age models, our results suggest that small-scale, targeted approaches for extracting specific brain health markers still hold significant value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.