Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Dental adhesives with immobilized antibacterial agents are formulated to combat bacterial invasion along the tooth-restoration interface. This study aims to evaluate the antibacterial effect of synthesized quaternary ammonium compound (QAC) incorporated into commercial dental adhesive. Methods QAC was synthesized from 2-(Dimethylamino) ethyl methacrylate and 1-Bromobutane and characterized using CHN (Carbon, Hydrogen, Nitrogen), FTIR (Fourier transform infrared) and H+NMR (Proton nuclear magnetic resonance) analyses. The synthesized QAC was assessed for its cytotoxicity and its antibacterial activity against S. mutans using disc diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), time-kill kinetics test, and TEM imaging. The QAC was added to the primer of a commercially available adhesive (OptiBond XTR) at two concentrations; 20 and 40 mg mL−1 representing the MIC and MBC, respectively. The antibacterial properties of the experimental adhesives, commercial antibacterial adhesive Clearfil SE Protect containing 12-methacryloyloxydodecylpyridinium bromide (MDPB), and commercial vehicle (OptiBond XTR) were compared using time-kill kinetics test. Statistical analysis by ANOVA followed by tukey post-hoc test (P < 0.05). Results Disc diffusion and time-kill kinetics tests showed potent antibacterial action of QAC, both in the unpolymerized and the cured forms. MIC and MBC were 20 and 40 mg mL−1 respectively. There was no statistically significant difference between experimental adhesives and Clearfil Protect with more than 99% reduction in bacterial count, while OptiBond XTR showed no bacterial killing up for up to 10 h. Conclusions The synthesized QAC added to a commercially available adhesive imparted antibacterial properties, thus providing an affordable adhesive system to the local market.
Background Dental adhesives with immobilized antibacterial agents are formulated to combat bacterial invasion along the tooth-restoration interface. This study aims to evaluate the antibacterial effect of synthesized quaternary ammonium compound (QAC) incorporated into commercial dental adhesive. Methods QAC was synthesized from 2-(Dimethylamino) ethyl methacrylate and 1-Bromobutane and characterized using CHN (Carbon, Hydrogen, Nitrogen), FTIR (Fourier transform infrared) and H+NMR (Proton nuclear magnetic resonance) analyses. The synthesized QAC was assessed for its cytotoxicity and its antibacterial activity against S. mutans using disc diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), time-kill kinetics test, and TEM imaging. The QAC was added to the primer of a commercially available adhesive (OptiBond XTR) at two concentrations; 20 and 40 mg mL−1 representing the MIC and MBC, respectively. The antibacterial properties of the experimental adhesives, commercial antibacterial adhesive Clearfil SE Protect containing 12-methacryloyloxydodecylpyridinium bromide (MDPB), and commercial vehicle (OptiBond XTR) were compared using time-kill kinetics test. Statistical analysis by ANOVA followed by tukey post-hoc test (P < 0.05). Results Disc diffusion and time-kill kinetics tests showed potent antibacterial action of QAC, both in the unpolymerized and the cured forms. MIC and MBC were 20 and 40 mg mL−1 respectively. There was no statistically significant difference between experimental adhesives and Clearfil Protect with more than 99% reduction in bacterial count, while OptiBond XTR showed no bacterial killing up for up to 10 h. Conclusions The synthesized QAC added to a commercially available adhesive imparted antibacterial properties, thus providing an affordable adhesive system to the local market.
Background The present study aimed to gain a comprehensive knowledge of the presence and environmental risks of pesticide and repellent residues in Lake Balaton and its sub-catchment area (Hungary). A unique analysis of 439 active substances and 17 metabolites was carried out on surface waters and one effluent wastewater as the only direct discharge into Lake Balaton from June 2017 until August 2020. Altogether 203 water- and 85 sediment samples were collected and analysed during the 3-year monitoring period. To determine the environmental risks of the detected pesticides to aquatic ecosystems, environmental risk assessment (ERA) was carried out using two approaches (worst- and general-case scenarios). Results Fifty-two pesticides and one insect repellent were detected, of which 26 belonged to herbicides (24 active substances and two metabolites), 15 to fungicides (15 active substances), and 11 to insecticides (eight active substances and three metabolites), of which only nine of the total analysed compounds are listed to be monitored in surface waters with threshold limit values (TLVs). The most frequently detected compounds were terbuthylazine, diethyltoluamide (DEET), desethyl-atrazine, and metolachlor. Glyphosate, aminomethylphosphonic acid (AMPA), and DEET were found with the highest concentrations of 3.0, 2.0, and 1.57 µg/L, respectively. The pesticide exposures were higher during the summer periods indicating a stable seasonal pattern. According to the performed ERA, the calculated Risk Quotients (RQs) indicated 18 compounds with a high level of risk including nine that had been banned for at least a decade. Discussion This study expands knowledge on the spatiotemporal occurrence of pesticides in inland surface waters and highlights the need to consider widening the number of analysed pesticides beyond the European Water Framework Directive (EWFD). According to our results, additional authority and legislation procedures should come into force for pesticides not indexed in the priority European Union Watch List.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.