Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. In recent years, the application of credit scoring in urban microfinance institutions became popular, while rural microfinance institutions, which mainly lend to agricultural clients, are hesitating to adopt credit scoring. The present study aims to explore whether microfinance credit scoring models are suitable for agricultural clients, and if such models can be improved for agricultural clients by accounting for precipitation.
Terms of use:
Documents inDesign/Methodology/Approach: This study merges two data sets: (i) 24,219 loan and client observations provided by the AccèsBanque Madagascar and (ii) daily precipitation data made available by CelsiusPro. An in-and out-of-sample splitting separates model building from model testing. Logistic regression is employed for the scoring models.
Findings:The credit scoring models perform equally well for agricultural and non-agricultural clients. Hence, credit scoring can be applied to the agricultural sector in microfinance. However, the prediction accuracy does not increase with the inclusion of precipitation in the agricultural model. Therefore, simple correlation analysis between weather events and loan repayment is insufficient for forecasting future repayment behavior.Research Limitation/Implication: The results should be verified in different countries and climate contexts to enhance the robustness.Social Implication: By applying scoring models to agricultural clients as well, all clients can benefit from an improved risk assessment (e.g. faster decision-making).Originality/Value: To the best of our knowledge, this is the first study investigating the potential of microfinance credit scoring for agricultural clients in general and for Madagascar in particular. Furthermore, this is the first study that incorporates a weather variable into a scoring model.