Code obfuscation is a major tool for protecting software intellectual property from attacks such as reverse engineering or code tampering. Yet, recently proposed (automated) attacks based on Dynamic Symbolic Execution (DSE) shows very promising results, hence threatening software integrity. Current defenses are not fully satisfactory, being either not efficient against symbolic reasoning, or affecting runtime performance too much, or being too easy to spot. We present and study a new class of anti-DSE protections coined as path-oriented protections targeting the weakest spot of DSE, namely path exploration. We propose a lightweight, efficient, resistant and analytically proved class of obfuscation algorithms designed to hinder DSE-based attacks. Extensive evaluation demonstrates that these approaches critically counter symbolic deobfuscation while yielding only a very slight overhead.