Abstract:Defect characterizes the depth of factorization of terms in differential (cyclotomic) expansions of knot polynomials, i.e. of the non-perturbative Wilson averages in the Chern-Simons theory. We prove the conjecture that the defect can be alternatively described as the degree in q ±2 of the fundamental Alexander polynomial, which formally corresponds to the case of no colors. We also pose a question if these Alexander polynomials can be arbitrary integer polynomials of a given degree. A first attempt to answer … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.