Abstract. The paper reports a molecular dynamics analysis of rotary properties of a transformational wave generated due to compressive influence. Studies are performed in the time interval prior to the onset of elastic precursor reflection from the free boundary. It is shown that the leading front of a rotary wave coincides with the transformational wave front. The rotary wave velocity for copper is determined, being equal to 1300 m/s. The values of angular moment projections onto the coordinate axes in a plane perpendicular to wave propagation are found to be symmetrical, and their total sum equals zero.