Endocannabinoids (eCBs) have recently been identified as axon guidance cues shaping the connectivity of local GABAergic interneurons in the developing cerebrum. However, eCB functions during pyramidal cell specification and establishment of longrange axonal connections are unknown. Here, we show that eCB signaling is operational in subcortical proliferative zones from embryonic day 12 in the mouse telencephalon and controls the proliferation of pyramidal cell progenitors and radial migration of immature pyramidal cells. When layer patterning is accomplished, developing pyramidal cells rely on eCB signaling to initiate the elongation and fasciculation of their long-range axons. Accordingly, CB 1 cannabinoid receptor (CB1R) null and pyramidal cellspecific conditional mutant (CB 1R f/f,NEX-Cre ) mice develop deficits in neuronal progenitor proliferation and axon fasciculation. Likewise, axonal pathfinding becomes impaired after in utero pharmacological blockade of CB 1Rs. Overall, eCBs are fundamental developmental cues controlling pyramidal cell development during corticogenesis.excitation ͉ glutamate ͉ layer patterning ͉ neocortex ͉ neurogenesis P yramidal cell specification follows a sequential scenario in the developing cerebrum: commitment of progenitor cells to the neuronal lineage occurs in the subcortical proliferative ventricular zone (VZ) and subventricular zone (SVZ). Immature pyramidal cells undergo radial migration to populate the cortical plate (CP) (1), where they acquire layer-specific neurochemical and morphological diversity (2). Pyramidal cell positioning and patterning of their corticofugal and intracortical axons is in part achieved via transcriptional control acting throughout cellular identification (2). However, epigenetic microenvironmental cues, provided by neural progenitors, radial glia, and immature neurons, are also fundamental in attaining cortical cell identity with particularly robust effects on pathfinding and directional growth of long-range axons (3).Endocannabinoids [eCBs; anandamide (AEA) and 2-arachidonoylglycerol] control various forms of synaptic plasticity at cortical glutamatergic synapses in the postnatal brain (4) through functional CB 1 cannabinoid receptors (CB 1 Rs) (5). During brain development, eCBs control neuronal fate decision (6), interneuron migration (7), and axonal specification (8). Developmental eCB actions are underpinned by a temporally defined assembly of functional eCB signaling networks with coincident expression of sn-1-diacylglycerol lipases (DAGL␣/) (9) and N-arachidonoyl-phosphatidyl ethanolamine (NAPE)-selective phospholipase D involved in eCB synthesis, fatty-acid amide hydrolase (FAAH) (an enzyme preferentially degrading AEA), and CB 1 Rs (8). The selective axonal targeting of CB 1 Rs and DAGLs in immature neurons suggests that eCBs may function in either cell-autonomous (6, 9) or target-derived (8) manner to control axonal elongation and postsynaptic target selection, respectively.Although recent findings in both mammals (8) and nonmammalian v...