Imperatorin, an active ingredient extracted from Angelica and Qianghuo, has anti-inflammatory, anti-oxidative stress damage, blocking calcium channels, and other properties. Our preliminary findings revealed the protective role of imperatorin in the treatment of vascular dementia, we further explored the underlying mechanisms concerning the neuroprotection function of imperatorin in vascular dementia. The cobalt chloride (COCl2)-induced chemical hypoxia and hypoglycemia of hippocampal neuronal cells was applied as in vitro vascular dementia model. Primary neuronal cells was isolated from the hippocampal tissue of SD suckling rats within 24 h of birth. Hippocampal neurons were identified by immunofluorescence staining of microtubule-associated protein 2. Silencing or overexpression of Nrf2 was conducted by transfection of corresponding plasmids in hippocampal neuronal cells. Cell viability was detected by MTT assay to determine the optimal modeling concentration of CoCl2. Mitochondrial membrane potential, intracellular reactive oxygen species and apoptosis rate was measured by flow cytometry. The expression of anti-oxidative proteins was detected by quantitative real-time PCR and western blot, including Nrf2, NQO-1 and HO-1. Nrf2 nuclear translocation was detected using laser confocal microscopy. The modeling concentration of CoCl2 was 150umol/l, and the best interventional concentration of imperatorin was 7.5umol/l. Significantly, imperatorin facilitated the nuclear localization of Nrf2, promoted the expressions of Nrf2, NQO-1, and HO-1 relative to the model-control group. Moreover, imperatorin reduced the mitochondrial membrane potential and ameliorated CoCl2-induced hypoxic apoptosis in hippocampal neurons. On the contrary, silencing Nrf2 completely abrogated the protective effects of imperatorin. Imperatorin might be an effective drug for preventing and treating vascular dementia.