The space use of captive animals has been reliably used as a tool to measure animal welfare in recent years. However, most analyses of space use focus primarily on terrestrial animals, with very little emphasis placed on the space use of aquatic animals. By comparing the space use of these animals to their natural histories and what would be expected of them physiologically, a general assessment of their overall welfare can be obtained. Using the Zoomonitor program, this study investigated the space use of five elasmobranch species housed in a captive aquatic environment: a blacktip reef shark (Carcharhinus melanopterus), a nurse shark (Ginglymostoma cirratum), a smooth dogfish (Musteluscanis), a bonnethead shark (Sphyrna tiburo), and a blacknose shark (Carcharhinus acronotus). The exhibit was delineated into five different zones: three represented the animal locations along the X/Y axis (‘Exhibit Use’), and two zones were related to the Z-axis (‘Depth Use’). The location of each individual on both the X/Y and Z axes was recorded during each observation. Heat maps generated from the Zoomonitor program were used in conjunction with the Spread of Participation Index (SPI) to interpret the data. It was found that while all the individuals used their given space differently, the Exhibit Use was relatively even overall (the SPI values ranged from 0.0378 to 0.367), while the Depth Use was more uneven (the SPI ranged from 0.679 to 0.922). These results mostly reflected what would be expected based on the species’ natural histories. However, for the smooth dogfish, the observed Exhibit Use and activity patterns revealed a mismatch between the anticipated and the actual results, leading to further interventions. As demonstrated here, space use results can be utilized to make positive changes to husbandry routines and enclosure designs for aquatic individuals; they are thus an important additional welfare measure to consider for aquatic species.