Background. Lung adenocarcinoma (LUAD) has been recognized as one of the commonest aggressive malignant tumors occurring in humans. The transforming acidic coiled-coil-containing protein 3 (TACC3) seems to be a probable prognostic marker and treatment target for non-small-cell lung cancer (NSCLC). Nevertheless, there exist no reports on the association between TACC3 and immunotherapy or other therapeutic interventions in LUAD. Methods. Premised on the data accessed from The Cancer Genome Atlas- (TCGA-) LUAD, we carried out bioinformatics analysis. The TACC3 expression in LUAD was analyzed utilizing the GEPIA. A survival module was constructed to evaluate the effect of TACC3 on the survival of patients with LUAD. Logistic regression was undertaken to examine the relationship between TACC3 expression and clinical factors. Protein-protein interaction analysis was performed in the GeneMANIA database, and enrichment analysis and identification of predicted signaling pathways were performed using Gene Ontology and Kyoto Encyclopedia of Genes. Additionally, the Cox regression was used to assess the clinicopathologic features linked to the overall survival in TCGA patients. Lastly, we investigated the link between TACC3 and tumor-infiltrating immune cells (TIICs) through CIBERSORT and the “Correlation” module of GEPIA. The association between TACC3 gene expression and drug response was analyzed using the CellMiner database to predict drug sensitivity. Results. The outcomes illustrated that TACC3 was upregulated and considerably correlated with dismal prognosis in LUAD patients. Moreover, the multivariate Cox regression analysis depicted TACC3 as an independent prognostic marker in LUAD patients. It was also revealed that the expression of TACC3 was related to clinical stage (
P
=
0.014
), age (
P
=
0.002
), and T classification (
P
≤
0.018
). Moreover, we discovered that the expression of TACC3 was considerably linked to a wide range of TIICs, especially the T cells and NK cells. Single-cell results found that TACC3 was mainly expressed in the immune cells (especially tprolif cells) and malignant cells. TACC3 gene expression was positively correlated with TMB and MSI, and TACC3 may provide a prediction of the efficacy of immunotherapy. Moreover, the correlation analysis between TACC3 gene expression and immune checkpoint gene expression revealed that TACC3 may coordinate the activities of these ICP genes in different signal transduction pathways. TACC3 is related to biological progress (BP), cellular component (CC), and molecular function (MF). The pathways involved in the interaction network involving TACC3 include nonhomologous end-joining, RNA transport, pantothenate and CoA biosynthesis, homologous recombination, and nucleotide excision repair. Furthermore, we investigated the association between the expression of TACC3 and the use of antitumor drugs, and TACC3 was positively correlated with response to most drugs. Conclusion. The findings from this research offer robust proof that the expression of TACC3 could be a prognostic marker correlated with TIICs in LUAD. TACC3 can also provide new ideas for immunotherapy as a potential therapeutic target.