Precipitation, a natural feature of weather systems in the Earth, is vitally important for the environment of any region. Under global climate change condition, the characteristics of precipitation have changed as a consequence of enhanced global hydrological cycle. The source region of the Yellow River (SRYR), locating within the Qinghai-Tibet Plateau, is sensitive to the global climate change due to its complex orography and fragile ecosystem. To understand the precipitation characteristics and its impacts on the environment in the region, we studied the characteristics of rainy days and precipitation amount of different precipitation classes, such as light (0-5 and 5-10 mm), moderate (10-15, 15-20 and 20-25 mm) and heavy (≥25 mm) rains by analyzing the precipitation data of typical meteorological stations in the SRYR during the period 1961-2014, as well as the trends of persistent rainfall events and drought events. Results showed that annual average precipitation in this area had a non-significant (P>0.05) increasing trend, and 82.5% of the precipitation occurred from May to September. Rainy days of the 0-5 mm precipitation class significantly decreased, whereas the rainy days of 5-10, 10-15, and 20-25 mm precipitation classes increased and that of ≥25 mm precipitation class decreased insignificantly. The persistent rainfall events of 1-or 2-day and more than 2-day showed an increasing trend, with the 1-or 2-day events being more frequent. Meanwhile, the number of short drought periods (≤10 days) increased while long drought periods (>10 days) decreased. Since the 0-5 mm precipitation class had a huge impact on the grasslands productivity; the 5-10, 10-15, and 20-25 mm precipitation classes had positive effects on vegetation which rely on the deep soil water through moving nutrients and water into the root zone of these vegetation or through the plant-microbe interactions; the ≥25 mm precipitation class contributed to the floods; and more persistent rainfall events and fewer long drought events inferred positive effects on agriculture. Thus, these results indicate grassland degradation, less risk of floods, and the upgrading impact of climate change on agriculture. This study may provide scientific knowledge for policymakers to sustain the eco-environmental resources in the SYSR.