The 7th 2014 Biomedical Engineering International Conference 2014
DOI: 10.1109/bmeicon.2014.7017422
|View full text |Cite
|
Sign up to set email alerts
|

Defining the rehabilitation treatment programs for stroke patients by applying Neural Network and Decision Trees models

Abstract: At present, patients whose have suffered from stroke in Thailand are increasing every year. Stroke impairments relate to many functions such as sensory, motor function, communication, visual and emotional function which depend on brain's lesion. Physical examinations and assessments are important for planning the rehabilitation programs. For this reason, there are several information for medical decision making. Missing some data for treatment planning may occur. To solve this problem, the proposed study used … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 13 publications
0
0
0
1
Order By: Relevance
“…Penelitian pertama yaitu penelitian yang berjudul mendefinisikan program perawatan rehabilitasi pasien stroke dengan menerapkan model Neural Network dan Decision Tree. Dalam penelitian tersebut menjelaskan bahwa algoritma Decision Tree dan Neural Network dapat menentukan program perawatan yang tepat dan nilai akurasi yang dihasilkan oleh algoritma Decision Tree lebih unggul dari algoritma Neural Network, Selain itu nilai sensitivitas kedua algoritma tersebut adalah sama, tetapi nilai spesifisitas dan akurasinya tidak sama [18].…”
Section: Tinjauan Literaturunclassified
“…Penelitian pertama yaitu penelitian yang berjudul mendefinisikan program perawatan rehabilitasi pasien stroke dengan menerapkan model Neural Network dan Decision Tree. Dalam penelitian tersebut menjelaskan bahwa algoritma Decision Tree dan Neural Network dapat menentukan program perawatan yang tepat dan nilai akurasi yang dihasilkan oleh algoritma Decision Tree lebih unggul dari algoritma Neural Network, Selain itu nilai sensitivitas kedua algoritma tersebut adalah sama, tetapi nilai spesifisitas dan akurasinya tidak sama [18].…”
Section: Tinjauan Literaturunclassified