Cetacean skin continues to be the investigative focus of researchers from several different scientific disciplines. Yet, most research on the basic functions of lipo‐keratinocytes, which constitute most of the cetacean epidermis, providing the first layer of protection against various environmental aggressors (including an ever‐increasing level of pollutants), is restricted to specialized literature on the permeability barrier only. In this review, we have attempted to bring together much of the recent research on the functional biology of cetacean skin, including special adaptations at the cellular, genetic and molecular level. We have correlated these data with the cetacean permeability barrier’s unique structural and metabolic adaptations to fully aquatic life, including the development of secondary barriers to ward off challenges such as biofouling as well as exposure to extreme cold for the epidermis, which is outside of the insulation provided by blubber. An apparent contradiction exists between some of the reported gene loss for lipogenic enzymes in cetacean skin and the high degree of cetacean epidermal lipogenesis, as well as loss of desmocollin 1 and desmoplakin genes [while immunolocalization of these proteins is reported (Journal of Anatomy, 234, 201)] warrants a re‐evaluation of the gene loss data.