The par region of the broad-host-range, IncP␣ plasmid RK2 has been implicated as a stability determinant by its ability to enhance the maintenance of mini-RK2 plasmids or heterologous replicons in a growing population of host cells. The region consists of two operons: parCBA, which encodes a multimer resolution system, and parDE, which specifies a postsegregational response mechanism that is toxic to plasmidless segregants. To assess the importance of this region to the stable maintenance of the complete RK2 plasmid in different hosts, we used the vector-mediated excision (VEX) deletion system to specifically remove the entire par region or each operon separately from an otherwise intact RK2 plasmid carrying a lacZ marker. The par region was found to be important to stable maintenance of RK2lac (pRK2526) in Escherichia coli and five other gram-negative hosts (Agrobacterium tumefaciens, Azotobacter vinelandii, Acinetobacter calcoaceticus, Caulobacter crescentus, and Pseudomonas aeruginosa). However, the relative importance of the parCBA and parDE operons varied from host to host. Deletion of parDE had no effect on the maintenance of pRK2526 in A. calcoaceticus, but it severely reduced pRK2526 maintenance in A. vinelandii and resulted in significant instability in the other hosts. Deletion of parCBA did not alter pRK2526 stability in E. coli, A. tumefaciens, or A. vinelandii but severely reduced plasmid maintenance in A. calcoaceticus and P. aeruginosa. In the latter two hosts and C. crescentus, the ⌬parCBA mutant caused a notable reduction in growth rate in the absence of selection for the plasmid, indicating that instability resulting from the absence of parCBA may trigger the postsegregational response mediated by parDE. We also examined the effect of the conjugal transfer system on RK2 maintenance in E. coli. Transfer-defective traJ and traG mutants of pRK2526 were stably maintained in rapidly growing broth cultures. On solid medium, which should be optimal for IncP-mediated conjugation, colonies from cells containing the pRK2526 tra mutants displayed significant numbers of white (Lac ؊ ) sectors on X-Gal (5-bromo-4-chloro-3-indolyl--D-galactopyranoside) plates, whereas sectors appeared rarely in colonies from tra ؉ plasmid-containing cells. Both the traJ and traG mutations further reduced the maintenance of the already unstable ⌬par derivative. Thus, these experiments with defined mutations in an intact RK2 plasmid have revealed (i) that the par region allows RK2 to adapt to the different requirements for stable maintenance in various hosts and (ii) that conjugal transfer can contribute to the maintenance of RK2 in a growing population, particularly under conditions that are favorable to RK2 transfer.The extraordinary success of plasmids in nature relies largely on plasmid-specified functions that promote their dissemination and ensure their persistence in growing populations of bacteria. The highly promiscuous, self-transmissible plasmids of incompatibility group P (IncP␣ and IncP) are particularly remarka...