ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2023
DOI: 10.1109/icassp49357.2023.10095230
|View full text |Cite
|
Sign up to set email alerts
|

Deformable Temporal Convolutional Networks for Monaural Noisy Reverberant Speech Separation

Abstract: Speech separation models are used for isolating individual speakers in many speech processing applications. Deep learning models have been shown to lead to state-of-the-art (SOTA) results on a number of speech separation benchmarks. One such class of models known as temporal convolutional networks (TCNs) has shown promising results for speech separation tasks. A limitation of these models is that they have a fixed receptive field (RF). Recent research in speech dereverberation has shown that the optimal RF of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
references
References 31 publications
0
0
0
Order By: Relevance