2019
DOI: 10.15292/geodetski-vestnik.2019.02.163-178
|View full text |Cite
|
Sign up to set email alerts
|

Deformation analysis with robust methods in geodetic nets

Abstract: deformation analysis, robust methods, numerical example This article describes the deformation analysis approach with robust methods in geodetic networks. The characteristic of this approach is the iterative weighted similarity transformation in which the displacement vector d is transformed into a datum determined by points with a smaller coordinate difference between two epochs. The article first gives a theoretical background of the approach, and then the approach is applied to the case of simulated measure… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
10

Year Published

2020
2020
2023
2023

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(14 citation statements)
references
References 12 publications
0
4
0
10
Order By: Relevance
“…The a priori variance for the directions is σ si  1" and the a priori variance for the distances is equal to σ di  5 mm. The plan of observations is the same in both epochs while previously the geodetic network was tested by different researchers with other methods used in deformation analyses such are: -Hannover (Ambrožič, 2001), -Karlsruhe (Ambrožič, 2004), -Delft (Marjetič, Zemljak and Ambrožič, 2013), -Fredericton (Vrečko and Ambrožič, 2013), -München (Soldo and Ambrožič, 2018), -Robust methods (Ambrožič et al, 2019).…”
Section: Practical Examplementioning
confidence: 99%
See 1 more Smart Citation
“…The a priori variance for the directions is σ si  1" and the a priori variance for the distances is equal to σ di  5 mm. The plan of observations is the same in both epochs while previously the geodetic network was tested by different researchers with other methods used in deformation analyses such are: -Hannover (Ambrožič, 2001), -Karlsruhe (Ambrožič, 2004), -Delft (Marjetič, Zemljak and Ambrožič, 2013), -Fredericton (Vrečko and Ambrožič, 2013), -München (Soldo and Ambrožič, 2018), -Robust methods (Ambrožič et al, 2019).…”
Section: Practical Examplementioning
confidence: 99%
“…-Hannover (Ambrožič, 2001), -Karlsruhe (Ambrožič, 2004), -Delft (Marjetič, Zemljak in Ambrožič, 2013), -Fredericton (Vrečko in Ambrožič, 2013), -München (Soldo in Ambrožič, 2018), -robustne metode (Ambrožič et al, 2019).…”
Section: Računski Primerunclassified
“…Least Apsolute Sum -LAS). Ove metode detaljno su javnosti predstavljene u radu [1] Opis i primena klasičnih robusnih metoda, mogu se naći i u sledećim radovima [4,5,6,7,8,9,10,11,12,13]. Prethodno navedene robusne metode vrše ocenu vektora deformacija na bazi razlike ocenjenih koordinata nulte i kontrolne epohe i u literaturi su poznate kao klasične robusne metode.…”
Section: Uvodunclassified
“…, 𝑤 𝑃𝑅𝑃𝑖 , … . ,0) (12) pri čemu je 𝑤 𝑃𝑅𝑃𝑖 = 𝑤(𝑑 ̂𝑃𝑅𝑃𝑖 ) bilo koja funkcija iz klase robusnih M-ocena. Konačno, zamenom izraza (12) u izraz (4), dobija se izraz za ocenu vektora pomeranja 𝐝 ̂ [1, 4,5,13] 𝒅 ̂= (𝑰 − 𝑯(𝑯 𝑇 𝑾𝑯) −𝟏 𝑯 𝑇 𝑾)∆𝒙 ̂ (13) pri čemu je 𝐈 (3m x 3m ) jedinična matrica.…”
Section: Stohastički Modelunclassified
“…On the other hand, in the GREDOD method, the displacement vector is determined based on the di erences of unadjusted observations from two measurement epochs. Numerous modi cations of the IWST method based on the introduction of di erent optimisation conditions of robust estimation are also present in the literature (Caspary and Borutta, 1987;Nowel, 2015;Ambrožič et al, 2019). For both IWST and GREDOD methods, in the procedure of robust estimation of the displacement vector, which is, in essence, the optimisation problem, the iterative reweighted least-squares (IRLS) method is traditionally applied.…”
Section: Introductionmentioning
confidence: 99%