Oral medical wastewater with heavy metal ions (such as plumbum, Pb2+) is regarded as the main pollutant produced in the oral cavity diagnosis, and the treatment process can pose a serious threat to human health. The removal of Pb2+ from oral medical wastewater facing major difficulties and challenges. Therefore, it is of great significance to take effective measures to remove Pb2+ by using effective methods. A new activated three-dimensional framework carbon (3D AFC), regarded as the main material to remove Pb2+ in the oral medical wastewater, has been fabricated successfully. In this experiment, the effects of 3D AFC absorbing Pb2+ under different conditions (including solid-to-liquid ratio, pH, ionic strength, contact time, and initial concentration, etc.) were discussed. And the result revealed that the adsorption kinetics process of Pb2+ on 3D AFC conformed to the pseudo-second-order model and the adsorption isotherm conformed to the Freundlich model. Under the condition that pH = 5.5 and T = 298 k, the calculated maximum adsorption capacity of 3D AFC for Pb2+ was 270.88 mg/g. In practical application, it has strong adsorption ability for Pb2+ in oral medical wastewater. Thus, 3D AFC shows promise for Pb2+ remove and recovery applications because of high adsorption capacity for Pb2+ in oral medical wastewater due to its high specific surface area, outstanding three-dimensional network structure.