The paper consists of two parts. In the first part, by using the Gauss-Bonnet curvature, which is a natural generalization of the scalar curvature, we introduce a higher order mass, the Gauss-Bonnet-Chern mass m H k , for asymptotically hyperbolic manifolds and show that it is a geometric invariant. Moreover, we prove a positive mass theorem for this new mass for asymptotically hyperbolic graphs and establish a relationship between the corresponding Penrose type inequality for this mass and weighted Alexandrov-Fenchel inequalities in the hyperbolic space H n . In the second part, we establish these weighted Alexandrov-Fenchel inequalities in H n for any horospherical convex hypersurface Σ Σ