The Tara Deep Zn-Pb deposit (currently 26.2 Mt @ 8.4% Zn, 1.6% Pb) is the latest major discovery by Boliden Tara Mines (first announced in 2016) which significantly adds to the existing world-class Navan deposit. Located 2 km south of the Navan deposit in Co. Meath, Ireland, economic mineralization is hosted by upper Tournaisian carbonates (Pale Beds; 87% of the total economic resource), within a degraded footwall of a major south-dipping normal fault, and also within lower Visean sedimentary breccias (‘S Fault’ Conglomerates; SFC). Sphalerite and galena are the dominant sulphides, with massive, cavity fill and brecciated textures dominating. These textures attest complex, subsurface, episodic mineralization events that display considerable reworking, fracturing, dolomitization, open-space infill and selective replacement. Lower Visean syn-rift sliding, erosion, and deposition of thick debrites and calc-turbidites at Tara Deep record basin margin processes near extensional faulting associated with formation of the Dublin Basin. These debrites host detrital sulphide-rich clasts and offer unambiguous evidence that the onset of mineralization occurred during the upper Tournaisian. δ34S values of base metal sulphides have a bimodal distribution suggesting both bacteriogenic (-13.5 to -3.6‰) and hydrothermal sulphur sources (+3.4 to +16.2‰). Both textural and sulphur isotope data reveal the dynamic nature of mineralization at Tara Deep and infer fluid mixing. Lead isotope analyses display remarkably homogeneous 206Pb/204Pb of 18.23 ±0.006 (2σ, n=25), which is coincident with Pb isotope data across the Navan deposit. Subsequently, Tara Deep and Navan are isotopically similar, showing both a statistically identical Pb isotopic signature and a bimodal sulphide S isotopic distribution and homogeneous sulphate signature. In particular, the Pb isotopes and the hydrothermal S signature, correlate with Navan and support the view that base-metals were leached from the underlying Lower Palaeozoic basement, and suggest that similar deep, circulating metalliferous fluids were also involved at Tara Deep. However, despite these similarities, key differences can be recognized within the S isotope data; around 5‰ shifts to higher δ34S in the surface-derived S isotope signatures (both bacteriogenic sulphide and sulphate) indicate that Tara Deep’s sulphur was sourced from a distinct seawater/connate fluid signature. The Tara Deep deposit has many similarities with the neighbouring Navan deposit reflecting comparable controls on the mineralizing processes in terms of host rocks, Pb and S sources, and tectonic environment. Mineralization initiated during an early phase of the developing Dublin Basin (syn-diagenetically) and kept pace with rifting and subsequently an evolving basin.