This paper aims to investigate the utilization of octet truss lattice structures in gas turbine blades to achieve weight reduction and improvement in vibration characteristics, which are desired for turbine blades to improve the efficiency and load capacity of turbines. A solid blade model using NACA 23012 airfoil was designed as reference. Three lattice-based blades were designed and manufactured via additive manufacturing by replacing the internal volume of solid blades with octet truss unit cells of variable strut thickness. Experimental and numerical vibration analyses were performed on the blades to establish their suitability for potential use in turbine blades. A maximum weight reduction of 24.91% was achieved. The natural frequencies of lattice blades were higher than those of solid blades. A stress reduction up to 38.6% and deformation reduction of up to 21.5% compared with solid blades were also observed. Both experimental and numerical results showed good agreement with a maximum difference of 3.94% in natural frequencies. Therefore, apart from being lightweight, octet-truss-lattice-based blades have excellent vibration characteristics and low stress levels, thereby making these blades ideal for enhancing the efficiency and durability of gas turbines.