2020
DOI: 10.1007/s12215-020-00564-9
|View full text |Cite
|
Sign up to set email alerts
|

Deformations of Calabi-Yau manifolds in Fano toric varieties

Abstract: In this article, we investigate deformations of a Calabi-Yau manifold Z in a toric variety F, possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert functor HZF of infinitesimal deformations of Z in F to the functor of infinitesimal deformations of Z is smooth. This implies the smoothness of HZF at the corresponding point in the Hilbert scheme. Moreover, we give some examples and include some computations on the Hodge numbers of Calabi-Yau manifolds in Fano toric varieties.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?