Abstract:Let D : Ω → Ω be a differential operator defined in the exterior algebra Ω of differential forms over the polynomial ring S in n variables. In this work we give conditions for deforming the module structure of Ω over S induced by the differential operator D, in order to make D an S-linear morphism while leaving the C-vector space structure of Ω unchanged. One can then apply the usual algebraic tools to study differential operators: finding generators of the kernel and image, computing a Hilbert polynomial of t… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.