We study the thermodynamic properties of a relativistic magnetized neutral vector boson gas at any temperature. By comparing the results with the low temperature and the non relativistic descriptions of this gas, we found that the fully relativistic case can be separated in two regimes according to temperature. For low temperatures, magnetic field effects dominate and the system shows a spontaneous magnetization, its pressure splits in two components and, eventually, a transversal magnetic collapse might occur. In the high temperature region, the gas behavior is led by pair production. The presence of antiparticles preserves the isotropy in the pressure, and increases the magnetization and the total pressure of the system by several orders.