The theory of speciation is dominated by adaptationist thinking, with less attention to mechanisms that do not affect species adaptation. Degeneracy – the imperfect specificity of interactions between diverse elements of biological systems and their environments – is key to the adaptability of populations. A mathematical model was explored in which population and resource were distributed one-dimensionally according to trait value. Resource consumption was degenerate – neither strictly location-specific nor location-independent. As a result, the competition for resources among the elements of the population was non-local. Two modeling approaches, a modified differential-integral Verhulstian equation and a cellular automata model, showed similar results: narrower degeneracy led to divergent dynamics with suppression of intermediate forms, whereas broader degeneracy led to suppression of diversifying forms, resulting in population stasis with increasing phenotypic homogeneity. Such behaviors did not increase overall adaptation because they continued after the model populations achieved maximal resource consumption rates, suggesting that degeneracy-driven distributed competition for resources rather than selective pressure toward more efficient resource exploitation was the driving force. The solutions were stable in the presence of limited environmental stochastic variability or heritable phenotypic variability. A conclusion was made that both dynamic diversification and static homogeneity of populations may be outcomes of the same process – distributed competition for resource not affecting the overall adaptation – with the difference between them defined by the spread of trait degeneracy in a given environment. Thus, biological degeneracy is a driving force of both speciation and stasis in biology, which, by themselves, are not necessarily adaptive in nature.