We prove the existence of good smooth integral models of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic (0,). As a first application we provide a smooth solution (answer) to a conjecture (question) of Langlands for Shimura varieties of Hodge type. As a second application we prove the existence in arbitrary unramified mixed characteristic (0,) of integral canonical models of projective Shimura varieties of Hodge type with respect to h-hyperspecial subgroups as pro-étale covers of Néron models; this forms progress towards the proof of conjectures of Milne and Reimann. Though the second application was known before in some cases, its proof is new and more of a principle.