Microbial catabolic capacity in digesta from the gastrointestinal tract of pigs fed either dry feed or fermented liquid feed (FLF) was determined with the PhenePlate multisubstrate system. The in vitro technique was modified to analyze the kinetics of substrate catabolism mediated by the standing stock of enzymes (potential rates of fermentation), allowing a quantitative evaluation of the dietary effect on the catabolic capacity of the microbiota. In total, the potential rates of fermentation were significantly reduced in digesta from the large intestine (cecum, P < 0.1; colon, P < 0.01; and rectum, P < 0.0001) of pigs fed FLF compared to pigs fed dry feed. No effect of diet was observed in the stomach (P ؍ 0.71) or the distal part of the small intestine (P ؍ 0.97). The highest rates of fermentation and the most significant effect of diet were observed for readily fermentable carbohydrates like maltose, sucrose, and lactose. Feeding FLF to pigs also led to a reduction in the large intestine of the total counts of anaerobic bacteria in general and lactic acid bacteria specifically, as well as of microbial activity, as determined by the concentration of ATP and short-chain fatty acids. The low-molecularweight carbohydrates were fermented mainly to lactic acid in the FLF before being fed to the animals. This may have limited microbial nutrient availability in the digesta reaching the large intestine of pigs fed FLF and may have caused the observed reduction in activity and density of the cecal and colonic microbial population. On the other hand, feeding FLF to pigs reduced the viable counts of coliform bacteria (indicator of Escherichia coli and Salmonella spp.) most profoundly in the stomach and the distal part of the small intestine, probably due to the bactericidal effect of lactic acid and low pH. The results presented clearly demonstrate that feeding FLF to pigs had a great impact on the indigenous microbiota, as reflected in bacterial numbers, short-chain fatty acid concentration, and substrate utilization. However, completely different mechanisms may be involved in the proximal and the distal parts of the gastrointestinal tract. The present study illustrates the utility of the PhenePlate system for quantifying the catabolic capacity of the indigenous gastrointestinal tract microbiota.Ecophysiological characterization of terrestrial and aqueous microbial communities as well as model consortia of bacteria has been performed with carbon utilization tests such as Biolog, based on colorimetric measurements of tetrazolium dye reduction coupled to substrate oxidation (4,6,9,37). Working in a predominantly anaerobic and reduced environment like the gastrointestinal tract, it may be critical, however, to use a system based on a redox indicator, since accumulated reducing equivalents seem to interfere and render false-positive signals (M. Katouli, personal communication; O. Højberg, unpublished data). The PhenePlate system (PhPlate AB, Stockholm, Sweden), on the other hand, is a substrate utilization test system b...