Superior characteristics and great potential of coated conductor (CC) tapes are some of the promises in pursuit of energy efficient application in electrical field. However, in electric device applications, the coefficient of thermal expansion (CTE) mismatch of each constituent layer, screening current, excessive radial tensile stresses during operation, and other coil fabrication related reasons might cause delamination damage in CC tapes. It was reported that the delamination among its constituent layers resulted to the degradation of its electromechanical properties on coil application. Therefore, the investigation on its delamination behavior is necessary for device application design. In this study, using the anvil test method, the delamination behaviors in 12-mm-wide Cu stabilized and brass laminated GdBa 2 Cu 3 O y CC tapes with stainless steel substrate were investigated. The mechanical delamination strength of the CC tapes for differently assembled upper anvil and CC tape configurations about widthwise direction was investigated by using a 4 mm × 8 mm size upper anvil. Mechanical delamination strength of the CC tape was not enhanced by the addition of brass laminate and showed no significant difference depending on the superconducting side or the substrate side. Furthermore, both CC tapes exhibited similar delamination mechanisms and sites but showed different fracture morphologies.