Purpose
Despite extensive research, HIV-1 remains a global epidemic with variations in pathogenesis across regions and subtypes. The Viral Infectivity Factor (Vif) protein, which neutralizes the host protein APOBEC3G, has been implicated in differences in clinical outcomes among people living with HIV (PLHIV). Most studies on Vif sequence diversity have focused on subtype B, leaving gaps in understanding Vif variations in HIV-1C regions like South Africa. This study aimed to identify and compare Vif sequence diversity in a cohort of 51 South African PLHIV and other HIV-1C prevalent regions.
Methods
Sanger sequencing was used for Vif analysis in the cohort, and additional sequences were obtained from the Los Alamos database. Molecular modeling and docking techniques were employed to study the influence of subtype-specific variants on Vif-APOBEC3G binding affinity.
Results
The findings showed distinct genetic variations between Vif sequences from India and Uganda, while South African sequences had wider distribution and closer relatedness to both. Specific amino acid substitutions in Vif were associated with geographic groups. Molecular modeling and docking analyses consistently identified specific residues (ARGR19, LYS26, TYR30, TYR44, and TRP79) as primary contributors to intermolecular contacts between Vif and APOBEC3G, essential for their interaction. The Indian Vif variant exhibited the highest predicted binding affinity to APOBEC3G among the studied groups.
Conclusions
These results provide insights into Vif sequence diversity in HIV-1C prevalent regions and shed light on differential pathogenesis observed in different geographical areas. The identified Vif amino acid residues warrant further investigation for their diagnostic, prognostic, and therapeutic potential.