The remarkable catalytic potential of perovskite nanocrystals (NCs) remains underutilized due to their limited stability in polar media, resulting from the vulnerability of their structure to disruption by polar solvents. In this study, we address this challenge by employing the bolaamphiphilic NKE-12 ligand, which features multiple denticities to effectively shield the surface of CsPbBr 3 NCs from polar solvent interactions without compromising their light-harvesting properties. Our research, utilizing electrochemical impedance and photocurrent response measurements, highlights efficient charge separation and charge transfer enabled by NKE-12 ligands, which feature multiple ionic groups and peptide bonds, compared to conventional oleylamine/oleic acid ligands on CsPbBr 3 NCs. Through the utilization of purely ligand-derived water-dispersed CsPbBr 3 /NKE-12 NCs, we successfully showcased their photocatalytic activity for acrylamide polymerization. A series of control experiments unveil a radical-based reaction pathway and suggest the synergistic involvement of photogenerated electrons and holes in producing the O 2•− and OH • free radicals, respectively. Our findings emphasize the crucial role of ligand engineering in stabilizing perovskites in water and harnessing their exceptional photocatalytic attributes. This study opens new avenues for applying perovskite NCs in various catalytic processes in polar media.