In this study, we propose a deep learning algorithm that directly compensates for luminance degradation owing to the deterioration of organic light emitting diode (OLED) devices to address the burn-in phenomenon of OLED displays. Conventional compensation circuits are encumbered by a high cost of development and manufacturing processes owing to their complexity. However, given that deep learning algorithms are typically mounted on a system on chip (SoC), the complexity of the circuit design is reduced, and the circuit can be reused by re-learning only the changed characteristics of the new pixel device. The proposed approach comprises deep feature generation and multi-stream self-attention, which decipher the importance of the variables, and the correlation between burn-in-related variables. It also utilizes a deep neural network that identifies the nonlinear relationship between the extracted features and luminance degradation. Thereafter, the luminance degradation is estimated from the burn-in-related variables, and the burn-in phenomenon can be addressed by compensating for the luminance degradation. The experimental results revealed that compensation was successfully achieved within an error range of 2.69%, and demonstrate the potential of a new approach that can mitigate the burn-in phenomenon by directly compensating for pixel-level luminance deviation.