Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.