The molecular and enzymatic properties of the extensively studied enzyme cathepsin D are reviewed and additional information concerning its activity presented. Cathepsin D at pH 5.5 (37°C) degraded several myofibrillar proteins. The most rapidly hydrolyzed included titin and perhaps nebulin, myosin heavy chain, and M and C‐proteins. The effects of cathepsin D on myofibrillar structure under these conditions included reduction in A band width, cleared central region in the A band, and dislocation of the Z line. Temperature was found to exert a strong influence on activity of cathepsin D and maximum activity was observed at 45°C with both muscle and hemoglobin substrates. Activity was evident at even higher temperatures and approximately 49% remained at 55°C (hemoglobin assay). Low temperature (i.e., < 15°C) however, has been observed to result in almost complete inactivity of the enzyme. The implications of this information for involvement of cathepsin D in postmortem proteolysis and tenderization were discussed.