Plasma chemistry is part of the development of high technology that meets the modern requirements of greening and resource conservation. The study of physic-chemical laws and processes occurring in the zone of action of electric discharge plasma near the surface of a liquid is of high scientific and applied interest. In the study, developed and patented by a team of authors, plasma-chemical reactors were used, which implement the treatment of a liquid with both barrier and glow discharges near the surface of the liquid phase in a flow-through mode. Solutions of primary and secondary aliphatic alcohols were used as a model object of plasma-chemical treatment. As a result of the study, the mechanisms of liquid-phase oxidation of primary and secondary aliphatic alcohols during plasma-chemical treatment of water were proposed. The emission spectra of electric discharges at the gas-liquid interface in the presence of dissolved organic substances were obtained and analyzed. Spectral studies of electrodischarge plasma in the liquid-liquid zone confirmed the differing composition of the inorganic oxidation products of primary and secondary aliphatic alcohols. When deciphering the spectra of barrier and glow discharges, the characteristic emission bands of nitrogen N2, OH-radicals and nitric oxide, as well as lines of atomic hydrogen H and oxygen O were shown. In addition, the effect of the nature of the organic substances contained in the treated water on the characteristics of the electric discharge plasma was shown