BackgroundIn recent decades adhesively bonded joints gained attention in many industries such as automotive, aeronautics and offshore, increasing structural mechanical repair services and thus promoting technological advances. It is a trend to nowadays replace welded and bolted joint for adhesively bonded joint. Advantages over welded and bolted joints are don't need a fire exposure, fast manufacturing, fatigue and corrosion resistance. Although the geometry of bonded joint is complex considering particularities at the end of joint, adhesive joint promotes a decrease of stress concentration [1,2].A relation between adherend and adhesive material and consequently the load transfer of joint is intrinsically related to surface state. The correct preparation requires total removal of contaminants (remaining corrosion layers, dirt, lubricating and bio-organisms) is needed [3]. A strong adhesion depends on bonding surface treatment in order to improve a joint strength, although bond strength doesn't increase with increase of roughening [4]. The surface roughness modifications in the bonded area of the joint promote an expressive effect in the bonded structures [5,6].The main techniques for surface modification are sandblasting, grinding and chemical cleaning that makes a generation of specific surface topographies at bonding area. The advantages of bonding area preparation are a great mechanical coupling of the adhesive
AbstractAdhesively bonded joints are being widely used in the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as wel as production costs. This parameter highly influences the mechanical properties overall of such structures. The effects of UV radiation on the single lap joints manufactured with different types of surface preparation and temperature were examined before and after UV exposure. Sandblasting, sanding and chemical cleaning were used as surface preparation and two test temperatures were used for investigation, 25 and 115 °C. The results of those tests showed that surface preparation highly influences shear strength, but does not affect the stiffness of the tested joints. Temperature also influences the shear strength and stiffness. UV radiation contributes to increase shear strength and do not degrade the tested single lap joints.