BACKGROUND
Pesticide residues in fruits and vegetables threaten food safety. Cleaning before eating is a usual way to remove pesticide residues, so it is very important to find the most efficient cleaning conditions for public health. However, many previous cleaning studies only focused on a single variable which required a large amount of time manpower and material resources. Plackett–Burman design (PBD) and response surface methodology can avoid the earlier‐mentioned problems and have potential in studying the influence and interaction of multiple factors. In this study, the effect of five factors on the removal of triadimefon and boscalid from rape by ultrasonic washing was evaluated through PBD: pH of water, ultrasonic cleaning time, water temperature, initial residual concentration and volume of water.
RESULTS
Temperature had a significant effect on the rate of triadimefon removal while the other four factors impacted boscalid removal greatly. A higher temperature was better for the removal rate of triadimefon. Under alkaline environment, when initial residual concentration and cleaning time increased with decreasing water volume, the removal rate of boscalid increased. Furthermore, the interactions among factors were obtained. The regression coefficients of fitting equations about triadimefon and boscalid were 0.9657 and 0.9738, respectively.
CONCLUSION
Changing pH of water, cleaning time, water volume and temperature during the washing process of rape through PBD designed experiments represents a valid strategy for improving the removal rate of two pesticides residue. This study provides a reference for ultrasonic cleaning conditions by a sink dishwasher, which has a positive effect on food safety. © 2021 Society of Chemical Industry.